
Static and Dynamic Load Balancing Techniques
and Implementations

Johan Vikström - jovi@kth.se
Georgios Tagkoulis - giorgost@kth.se

April 2020

1 Introduction

Load balancing is an integral part of any distributed system that is mostly relevant
during operations. It is not only integral to being able to increase capacity but also a
requirement to improve resiliency. One of the big problems distributed systems tend to
have are hot spots, servers that get a much higher load than the mean load. Hot spots
in a system generally cause bad tail latency [1]. So the main goal with load balancing
is to remove those, or rather, the main goal with load balancing is to reduce the load
imbalance between different servers in a system [2]. In a data center setting this over-
utilization and corresponding under-utilization of parts of the system can not only lead
to decreased response times in both the tail and in general. But it can also lead to
increased costs for the cooling systems and in increases of CO2 emissions [2][3]. So
poor load balancing does not only cause systems to run slower, it can cause systems to
violate their SLOs, increase costs and increase CO2 emissions.

When talking about load balancing the first thing one thinks about is normally
about load balancing the computational load, for example load balancing http re-
quest/responses. But systems also need to balance storage resources (i.e. sharding) to
optimize the medium’s size, IOPS and resiliency [4].

Load balancing is generally classified into one of two groups depending or not if they
have knowledge of the current state of the system while executing. Either static or
dynamic [2]. Static load balancing does not depend on and has no information about
the current state of the system in contrast to dynamic load balancing.

For basic request/response workloads random balancing takes you a long way to get
really good load balancing. However for certain tasks that require a lot of preloaded
data, for example think tasks requiring machine learning models, something that is
more application aware is required. If one would try to do random load balancing for
this the request latency would be dominated in pulling the model. One example of such
a system is Slicer which Google created as a general purpose auto-sharding service.
The median Slicer managed workload uses 63% less resources than if they would use
another form of static load balancing [4]. So thought out load balancing can lead to big
cost savings and decreased response times.

In this essay we will present a few different approaches to load balancing and give
examples of where they are used.

1



2 Static load balancing

The goal of every load balancing technique is to distribute the workload evenly to all
the available nodes/workstation, either it is in cloud computing or databases and web
cache management.

Static load balancing depends heavily on the prior information about the system [3], and
requires a master node, centralized router, to distribute the workload to the available
nodes. This type of load balancing is best suited to homogeneous systems [2]. Since
there are no dynamic statistics about the current state of the system (workload), the
process assignment is decided at the beginning of the execution and cannot be changed
later on. This means the static load balancing algorithms are non-preemptive [2]. There
are advantages and disadvantages in this approach. The lack of any communication
between the nodes aims to provide less overhead in each node resulting to reduction
of communication delays and minimization of the process execution time [2]. Two of
the most notable static load balancing algorithms are the Round-Robin and consistent
hashing algorithms.

2.1 Round-Robin

The Round-Robin algorithm is one of the simplest algorithms for distributing the load
to a set of nodes. The idea is the master node to assign each load to the list of nodes
N1-Nn based on a rotating order, so eventually the jobs are evenly distributed to the
available slave-nodes [5]. Thus, the first load goes to N1 node, the second to N2 and
so on. Only after a load is assigned to the Nn node, the master node will assign again
to the N1. While simple and efficient in many cases, its main drawback is that it does
not take into consideration the execution time of the incoming load, meaning that the
system could end up in some nodes being "swamped". Therefore, it is more suitable for
requests that are similar in nature, like the http requests in web server application [5].
With prior knowledge of the execution time of the incoming tasks, Round-Robin could
be modified with weights so the heavy requests could be directed to the most powerful
nodes.

2.2 Consistent Hashing

The consistent hashing algorithm was introduced in 1997 [6], in an effort to provide a
better implementation of distributed caching for web servers. In the case of web servers,
the resources the web server serves are evenly distributed to a number of caches. This
means clients can fetch the resources without overflowing the server with requests..
Both the server and the clients have the same hash function, so the correct resources
are served each time. Consistent hashing does not use a classical hash function, like
the linear congruential function f(x) = a ∗ x+ b (mod p) where p is the number of slave-
nodes (caches). The reason is that this would cause a severe deterioration of the system
every time a node (cache) is added or removed from the system. The positions for all
cached data would need to be re-calculated and sent to the new positions and in the
mean-time all cached data would be useless since the clients would be searching for
them in different positions [6].

Consistent hashing uses the notion of "views" to tackle this problem. "View" is defined
as a set of caches that a particular client knows about, so each machine is constantly
"aware of a constant fraction of the currently operating caches" [6] and every client
uses a consistent hash function which maps the resources to one of the caches in their
view. Two important properties of consistent hashing is "smoothness" and "spread".
The former property refers to the minimum expected resources that must be moved
each time a new node (cache) is added or removed, while the latter one refers to the

KTH 2 / 8 DD2482



Figure 1: Example of consistent hashing when projected in a unit circle, where a
number of URLs are mapped to the available caches. Figure adapted from [7] with
the following explanatory caption: (i) Both URLs and caches are mapped to points on
a circle using a standard hash function. A URL is assigned to the closest cache going
clockwise around the circle. Items 1, 2, and 3 are mapped to cache A. Items 4, and 5 are
mapped to cache B. (ii) When a new cache is added the only URLs that are reassigned
are those closest to the new cache going clockwise around the circle. In this case when
we add the new cache only items 1 and 2 move to the new cache C. Items do not move
between previously existing caches.

small number of different caches that a resource exist from the perspective of the client
"View" [6].

In 1999, Karger et al [7], provided an example of the consistent hashing algorithm with
the unit circle as presented in Figure 1.

One thing to be noted about consistent hashing is that it’s not better than just doing a
random assignment of clients to server [8]. So there can be a lot severe load imbalance
in a system using consistent hashing [9].

3 Dynamic Load Balancing

Unlike the static load balancing, in dynamic load balancing decisions about the
distribution of the workload are influenced by the current state of the system. Many
attributes are taken into consideration. Depending on the system these could include
CPU power, CPU usage, memory, network bandwidth and so on. Loads can also be
assigned to a particular node and later re-assigned to another node depending on the
run-time information that is collected while the tasks are executed [2]. Despite the
overhead that is added to the system due to the run-time communication among the
nodes, dynamic load balancing techniques offers a number of advantages over static
ones. First, in the case that a node is down, the system is not halted despite some
deterioration in its performance. Furthermore, since it is possible to move a task from
an over-utilized node to an under-utilized one, it is said that the dynamic load balancing
technique is preemptive. At last, algorithms in this category are more versatile than the
static ones, offering better outcomes in heterogeneous and dynamic conditions [2].

As dynamic load balancing may move items between nodes key churn is another
important metric to optimize against. Key churn is a measure for how often and how
many keys are moved during operations. While a key is being moved the data for that
key might not be served depending on implementation. More importantly a high key
churn will consume a lot of bandwidth as items are moved [4] [8].

KTH 3 / 8 DD2482



3.1 Load Aware Consistent Hashing

One example of dynamic load balancing is a load aware consistent hashing algorithm.
As in the normal consistent hashing algorithm we have a set of servers, clients and a
hash function. The "Consistent Hashing with Bounded Loads" algorithm layered on top
guarantees that none of the servers receive c times the average load (i.e. max load is
cm/n where m is the number of requests, n number of servers) [8]. There are two main
changes in this algorithm when compared to "normal" consistent hashing.

• Each server is given a capacity.

• If a node is full it will forward to the next server in the ring.

The algorithm to insert into the system becomes: If a request is hashed to a server that
is full, forward to next server in the ring. Else insert into the server. Or in other words:
it’s exactly the same as one would do linear probing in hash maps (if server capacity
is set to one). Consequently: when we search for an item in the system we begin by
addressing the server that it’s hashed to. If the item is in that server, we are done.
However if it’s not there and the server is full, we look at the next server in the ring and
keep on doing this recursively. If we get to a server that is non-full and does not contain
the item we are looking for - the item is not in the system and the find can terminate.

This means that when deleting we can’t simply remove an item. This could cause the
find algorithm to fail if an insert has propagated any item. So if a node is full and an
item is deleted the algorithm might need to make sure it’s still full. We say that the
node has a "hole" where the item used to be. There is a very simple recursive algorithm
for solving this: If the server propagated an item i, grab i from the next server and fill the
hole, continue doing this recursively with the next server.

When a server is added to the system the "back propagation" algorithm in the last
paragraph for deleting is used. Simply mark the server to have as many holes as it has
capacity and start filling holes in the entire system for as long as possible.

One thing to be noted about this is that capacities can be set independently of each
other, i.e. one server can have a capacity of 1 and another 10 if that is required for
some reason.

This algorithm is used by Vimeo to load balance their video servers, previously they
had used consistent hashing but they were getting a lot of load imbalance even after
trying a lot of different variants of consistent hashing that was supposed to solve this.
However after moving to load aware consistent hashing the problem of load imbalance
was solved [9]. It was also previously used by Google’s internal Pub/Sub, however now
it instead uses Slicer [8].

3.2 Slicer

In this section we will give an example of a dynamic distributed load balancing system
to hopefully make it clear how they can be implemented and just how much more
complex than static load balancing it can be.

The system we will describe is Slicer. Slicer is a Google general purpose auto-sharding
service used by internal Google applications. It’s a very versatile system being used
for a lot of things from per-user caches to topic based pub-sub to web-crawl manager
(saving site metadata) to serving fonts (which currently servers about a million fonts a
second). When the Slicer paper was written it served 4-7 million requests per second.
The systems load balanced with Slicer use 63% less resources in median than they
would if using some static load balancing algorithm [4].

KTH 4 / 8 DD2482



Figure 2: System overview: The Slicer service sends slice assignments to the client and
server slicelets.

Slicer is maintained as a separate service which allowed them to decouple their release
schedule from the projects that depended on them. The API they provide to services
that want to utilize Slicer load balancing is on the order of 5 functions and only 1
function is required to integrate into Slicer, namely mapping a key to a server address.
But this function has been integrated into their RPC system meaning for most cases
this mapping is handled transparently [4]. This means that a lot of the complexity is
not surfaced to application developers which makes integrating Slicer relatively simple.

3.2.1 Architecture

Slicer is an entire distributed system by itself with a few different parts. But before
explaining the architecture we need to define two things: a task is a single application
process, a job meanwhile is a collection of tasks being load balanced in a data center.
Slicer contains of three primary components: the slicer service, the clerk which is library
linked into clients and finally the slicelet which is a library linked into the servers. The
slicer service generates slice assignments and and notifies the slices and clerks of them.
Applications only interact with slicer using the clerk and slicelet libraries. In Figure 2
from the Slicer paper there is an overview of how these components react.

It’s also quite interesting for us to look at the actual Slicer Service. The component
generating slice assignments is the Assigner, it takes different signals from the system
as input, generates and sends the assignments to the store and distributor. One
important part is that there may be multiple Assigners in the same system. The way
we guarantee that assignments do not diverge is in the Store. Before generating an
assignment the Assigner first fetches the current assignment and updates the current
one. If there’s been an update while it was computing it’s own updated assignment
it retries with the new assignment. As slicer does fine-grained load balancing over
billions of keys sending assignments to slicelets and clerks becomes a bottleneck.
The distributors are there to reduce the network load. Essentially they become a
proxy for a set of clerks/slicelets. This way the distributor can be placed close to the
clerks/slicelets that are subscribed to it which will reduce the data center "bisection"
network usage. As instead of sending assignments over the entire data center the data
will only be local to the rack or set of racks. This is all illustrated in 3 from the Slicer
paper.

KTH 5 / 8 DD2482



Figure 3: Slicer service architecture. The assigner collects signals and uses them
to make slice assignments. The assignments are then sent to clerks/slicelets via
distributors.

3.2.2 Assignment generation

The goal Slicer optimizes against is to reduce load imbalance, maintain a high
availability and minimize churn. This is achieved by load balancing over application
defined keys. Each one of these keys are hashed to 63-bit slice keys and then Slicer
load balances ranges of these slice keys. This range based load balancing makes the
Slicer work load independent of the number of keys - meaning the application can have
a billion keys or 10 keys, Slicer is still able to load balance just fine. The hashing of
keys also reduces the probability of local hot spots as the resulting slice keys will be
uniformly distributed over the entire 63-bit range. In addition, Slicer can assign each
range to multiple tasks (i.e. servers) if a certain range gets has a high load. This might
be useful for things like machine translation where more than a single task is required
to serve translations to/from a specific language.

Initially the key space is evenly distributed amongst the tasks. During operations Slicer
monitors key load using either internal Google infrastructure or application reported
metrics. When slicer regenerates assignments it does two primary things to slices:
merging and splitting. Finally it also moves the resulting slices in a way that will reduce
load imbalance while minimizing key churn. The Slicer authors call this algorithm a
"weighted move", it goes as follows:

1. Reassign ranges that are no longer part of a job (because of task failures for
example)

2. Modify key redundancy in case configuration has changed

3. Merge adjacent cold key ranges into a single range

4. Pick a sequence of slice moves with as high a possible weight. Where the weight
for a move corresponds to reduction in load imbalance divided by key churn.

5. Finally split slices without changing the task they are assigned to (These split
slices can then be used the next time the assignment is done).

Those are the important parts of Slicer for our purposes has been covered, however
the paper contains a lot more content. For example how the Slicer API looks like, how
Slicer handles fault tolerance and how Slicer supports consistent assignments. It also
contains a fairly extensive evaluation section from different production examples.

KTH 6 / 8 DD2482



4 Conclusions

Load balancing is an extremely important aspect of distributed systems that directly af-
fects the performance, complexity and maintenance costs of the system. Depending on
the nature of the system, different approaches and techniques have been implemented.
In the case of simple http request/response workloads static load balancing algorithms,
like Round-Robin that was presented in a previous chapter, have shown that perform
very well. On the other hand, for more advanced large scale workloads dynamic load
balancing algorithms is a necessity for a well-functioning system. Well-designed load
balancing systems, both in terms of the implemented algorithm and the API that is
provided to application developers, is also clearly beneficial. Since one of the goals of
DevOps is to deliver application quicker with fewer failures, it becomes apparent that
load balancing plays an important role to that direction.

One example of success with well designed load balancing is Vimeo. They first tried to
apply a lot of different band-aids into their consistent hashing load balancing without
getting any better results. The desired results only came after completely redesigning
their load balancing and moving to the load aware consistent hashing algorithm.

An example of a successful general purpose load balancing system is Google’s Slicer. It
has been a success with a large decrease of resource consumption. It’s been applied
to a lot of different services within Google, and the reason is clearly its very simple API
that makes it easy to integrate because a simple API is one of the most important parts
of a load balancing system. In general, a perfect load balancing system with a massive,
incomprehensible API is probably worse than one that’s a bit imperfect with a simple
API - as no one will understand the one with the incomprehensible API.

KTH 7 / 8 DD2482



References

[1] Yu-Ju Hong and Mithuna Thottethodi. “Understanding and mitigating the impact
of load imbalance in the memory caching tier”. In: Proceedings of the 4th annual
Symposium on Cloud Computing. 2013, pp. 1–17.

[2] Jitendra Bhatia and Malaram Kumhar. “Perspective Study on Load Balancing
Paradigms in Cloud Computing”. In: (Mar. 2015).

[3] Sambit Kumar Mishra, Bibhudatta Sahoo, and Priti Paramita Parida. “Load
balancing in cloud computing: A big picture”. In: Journal of King Saud University
- Computer and Information Sciences 32.2 (2020), pp. 149–158. ISSN: 1319-1578.
DOI: https://doi.org/10.1016/j.jksuci.2018.01.003. URL: http://www.
sciencedirect.com/science/article/pii/S1319157817303361.

[4] Atul Adya, Daniel Myers, Jon Howell, et al. “Slicer: Auto-Sharding for Datacenter
Applications”. en. In: (), p. 17.

[5] Zahra Mohammed Elngomi and Khalid Khanfar. “A Comparative Study of Load
Balancing Algorithms: A Review Paper”. en. In: (2016), p. 11.

[6] David Karger, Eric Lehman, Tom Leighton, et al. “Consistent hashing and random
trees: distributed caching protocols for relieving hot spots on the World Wide Web”.
In: Proceedings of the twenty-ninth annual ACM symposium on Theory of computing.
STOC ’97. El Paso, Texas, USA: Association for Computing Machinery, May 1997,
pp. 654–663. ISBN: 978-0-89791-888-6. DOI: 10 . 1145 / 258533 . 258660. URL:
https://doi.org/10.1145/258533.258660 (visited on 04/20/2020).

[7] David Karger, Alex Sherman, Andy Berkheimer, et al. Web caching with consistent
hashing. May 1999. URL: https://doi.org/10.1016/S1389-1286(99)00055-9
(visited on 04/20/2020).

[8] Vahab Mirrokni, Mikkel Thorup, and Morteza Zadimoghaddam. “Consistent hash-
ing with bounded loads”. In: Proceedings of the Twenty-Ninth Annual ACM-SIAM
Symposium on Discrete Algorithms. SIAM. 2018, pp. 587–604.

[9] ardoland, Vimeo Engineering Blog. Improving load balancing with a new consistent-
hashing algorithm. 2016. URL: https://medium.com/vimeo-engineering-blog/
improving-load-balancing-with-a-new-consistent-hashing-algorithm-
9f1bd75709ed.

KTH 8 / 8 DD2482


