
AvocadOS: Joint Orchestration of Disaggregated CPUs and FPGAs in the Cloud

Pratyush Patel Katie Lim Johan Vikström

University of Washington

Abstract

In this work we research abstractions for disaggregated FP-
GAs to support them as first-class compute citizens in the
datacenter. In doing so, we determine how CPUs and FP-
GAs should be presented to application developers to maxi-
mize convenience, and how cloud providers should orches-
trate these increasingly heterogeneous compute resources.

1 Introduction

Most of the worldwide computation today takes place in data-
centers run by cloud providers. Clouds rely on the economy of
scale achieved by consolidating computing resources and shar-
ing them among numerous clients [8]. This provides notable
benefits to both cloud providers and users. Cloud providers
profit by packing user compute and data on shared hardware,
thereby maximizing resource utilization at amortized opera-
tional costs. In return, cloud users benefit from the abstraction
of a large, flexible pool of computing resources that they can
use and pay for on demand [5].

By offering flexible abstractions, the cloud computing
model has fundamentally shaped how users think about and
deploy applications at scale. For example, serverless comput-
ing has decoupled the notion of application code from the
hardware that it executes on [30]. This is done by virtualizing
the pool of datacenter hardware resources and automating
system and network configurations, which frees developers
from low-level details and allows them to focus on application
logic. Developers no longer need to worry about resource elas-
ticity, because they can easily scale up or down provisioned
resources depending on their application needs. They can also
offload fault tolerance concerns to cloud providers who guar-
antee highly available services by specifying Service Level
Agreements (SLAs) [41] and automatically handle migration
upon certain types of failures [14].

These flexible cloud abstractions have been shown to be
successful since their inception on CPU-based servers [5].
However, in recent years, cloud providers are increasingly

incorporating accelerators such as FPGAs and ASICs into
their datacenters [47, 24, 13]. This is driven by hardware
and application requirements. On the hardware side, CPU
performance has stalled due to the end of Dennard scaling
and energy dissipation concerns [54, 27, 28, 18]. Simultane-
ously on the applications side, modern workloads such as
machine learning (ML) and deep learning (DL) continue to
scale up [43, 38], with computation needs that can only be
effectively met by accelerators [31, 47, 19].

As of today, accelerators are exposed in relatively restricted
ways to cloud users. For example, Microsoft Catapult FPGAs
are directly attached to the datacenter network, but are kept
hidden from cloud users as they are used internally to acceler-
ate cloud services [47, 11, 21]. Amazon and Alibaba provide
FPGA-attached virtual machine instances that can be manu-
ally programmed via the host CPU, but with reduced access to
datacenter services such as the networking infrastructure [2,
3]. Google’s TPUs are exposed using a restricted TensorFlow
programming interface, which limits their usability for arbi-
trary user workloads [31, 24, 16].

With accelerators becoming another compute cornerstone
next to CPUs [34, 39], we believe that cloud providers need
to rethink the accelerator abstractions that are presented to
users. We posit that effectively exposing accelerators at scale
to cloud users will require flexible abstractions similar to
CPU-based clouds upon which large-scale user applications
can be easily built and managed.

In this work, we explore and build flexible cloud abstrac-
tions to expose network-attached FPGAs as first-class com-
pute citizens in the datacenter alongside CPUs. We choose to
focus on FPGAs because they have been adopted by several
cloud providers due to their programmability and versatility
benefits over ASICs [2, 3, 20, 13]. We envision that users
should be able to specify high-level application logic that
can transparently use either target platform. That is, FPGAs
should be able to replace CPUs for workload compute if
appropriate or necessary, thereby reducing developer efforts
in deploying efficient applications. In addition, applications
should be able to uniformly access all the necessary datacen-

1



ter resources, and automatically scale or migrate upon load
variations and failures, regardless of the target platform.

While existing frameworks already support such opera-
tions with CPUs [30, 14], no prior work provides all these
abstractions for FPGAs. Therefore, we develop mechanisms
to perform automatic resource provisioning, SDN-based net-
work configuration, resource virtualization, autoscaling, and
fault tolerance on disaggregated FPGAs. To realize these ab-
stractions, we build a node-level runtime for individual FPGA
nodes and incorporate FPGA support in a datacenter-scale
compute orchestrator.

Each FPGA node in our system consists of the FPGA ac-
celerator chip, a microcontroller, and local resources such
as storage and memory. The cloud provider programs the
FPGA with a trusted shell that abstracts low-level hardware
details from user applications. Users implement untrusted
applications as FPGA roles. The shell provides: (1) a uniform
interface to all roles to access local node resources such as
storage and memory, (2) an on-chip TCP networking stack
to communicate with and access distributed datacenter re-
sources [37], and (3) a multiplexing and isolation framework
to safely share the FPGA chip among multiple roles. The con-
trol processor is attached to the FPGA chip and periodically
communicates with the datacenter-wide compute orchestrator.
It is used to reconfigure the FPGA, setup network connections,
perform network and system configurations, and for load and
health monitoring.

The compute orchestrator is logically centralized and coor-
dinates the execution of all user-visible CPUs and FPGAs in
the datacenter. It periodically communicates with CPU servers
and control processors on FPGA nodes to obtain a global view
of the datacenter system. It provides the building blocks to de-
ploy and manage large-scale user applications. This includes
provisioning virtualized CPU and FPGA resources, allocating
and scheduling user jobs, setting up network configurations
between nodes via SDN, making autoscaling decisions based
on monitored load, and handling faults by performing migra-
tions or restarts.

We evaluate the functionality and efficiency of our pro-
posed abstractions by running various microbenchmarks. At
the individual node-level, these microbenchmarks show that
the shell implementation has a low resource utilization foot-
print, the TCP stack can communicate between compute
nodes at line rate, and that our isolation framework success-
fully allows multiple users to share the FPGA. At the orches-
trator level, our microbenchmarks validate that our provided
building blocks are functional at low overheads.

To evaluate the efficacy of our proposed abstractions, we
perform two case studies. The first extends the serverless
computing paradigm to support both CPU and FPGA-based
function backends [30]. The second enables transparently
deploying software or hardware-based Network Function Vir-
tualization (NFV) pipelines to monitor the safety of datacenter
packets [52]. These case studies show that our abstractions

are generalizable, and can be used to support a wide variety
of CPU and FPGA applications in datacenters.
We make the following contributions in this paper:

• We propose flexible abstractions to conveniently expose
network-attached FPGAs to cloud users.

• We implement these abstractions by building per-
node hardware platform for FPGAs and augmenting
datacenter-wide compute orchestration to support both
CPUs and FPGAs.

• We show that our abstractions can enable new functional-
ities for network-attached FPGAs in datacenters. We do
so by extending serverless computing frameworks to in-
corporate FPGAs, and implementing hardware-agnostic
NFV pipelines.

2 Background

2.1 Modern Cloud Abstractions
Over the years, cloud computing has undergone a shift to-
wards a lighter, fine-grained execution model. This trend is
centered around lowering application development complex-
ity by offloading management concerns to the cloud provider.
Traditionally, users deployed their long-running applications
in virtual machines, and manually monitored resource usage
and provisioned more VMs as needed [5]. As applications
shifted from monolithic to microservices, lighter-weight con-
tainers became a more appealing model due to their ability to
scale and their ease of deployment [9]. However, like VMs,
containers also required some configuration and resource man-
agement from users. This prompted the development of con-
tainer orchestration frameworks such as Kubernetes [46] and
Apache Mesos [29] which provide finer-grained resource shar-
ing and scheduling abstractions, and take orchestration burden
off from cloud users.

Following in this trend, a recent cloud abstraction called
serverless computing is emerging. Serverless computing is
an even simpler execution model where users specify com-
putation in the form of functions, and are not burdened with
resource allocation or deployment scaling. This separates
workloads from their hardware execution environment, lets
the cloud provider manage the scheduling and assignment of
functions to compute nodes, and enables fine-grained control
of datacenter utilization. This model is supported by promi-
nent cloud providers like Amazon [6], Google [25], and Mi-
crosoft [7] as well as many open-source frameworks such as
OpenFaaS [44] and Knative [36].

Modern serverless deployments have three components
that help support their flexible abstractions on CPU servers:
(1) an encapsulation framework such as containers that al-
lows interfacing the user code with system resources through
a virtualization layer [9], (2) a global orchestrator such as
Kubernetes for allocating and scheduling computation across

2



different nodes in the machine [46], and (3) a serverless en-
gine that handles load balancing, autoscaling, and fault tol-
erance [44]. Our goal is to support similar abstractions for
datacenter FPGAs.

2.2 Datacenter FPGAs
FPGAs are desirable in cloud settings due to their compute
and energy efficiency over general-purpose CPUs, and pro-
grammability benefits over specialized ASICs [20].

2.2.1 Cloud Deployments and Orchestration

Microsoft was one of the first cloud providers to deploy FP-
GAs as a part of their Catapult program. These FPGAs were
deployed either as PCIe-attached accelerators that communi-
cate directly with the datacenter network [47], or as bump-in-
the-wire networking stacks for their host CPUs [11]. Until
recently, both these types of FPGAs were not directly exposed
to users as a cloud service. Instead, they were managed and
used internally by Microsoft for accelerating Bing PageR-
ank [47], ML inference [21], and network encryption [11]. In
2019, Microsoft deployed user-customizable FPGAs as a part
of Azure ML [40], which allow users to deploy a restricted
set of DL models on a single Catapult FPGA and use them
for low-latency inference serving. Catapult has also imple-
mented an overlay network in FPGAs to obtain direct access
to various datacenter resources [51].

In contrast, Amazon, Alibaba and IBM provide virtual ma-
chine instances with one or more PCIe-attached FPGAs to
cloud users [2, 3, 13]. In this model, the cloud user submits an
application in an RTL source code form to the cloud provider.
The cloud platform merges the user RTL with a secure shell
logic and generates the FPGA bitstream image.

Although there are minor differences in the way FPGA
logic is deployed in each of the above cases, at a high level,
the FPGA logic is divided into two components, the shell
and the role. The shell is a trusted component that provides a
uniform access abstraction by implementing interfacing logic
to hardware resources such as the NIC, storage, memory, etc.
on the same node or across the network. The role contains
untrusted or user logic that must use the shell to perform re-
source access. However, beyond node-level support, existing
datacenter FPGAs lack higher-level virtualization and orches-
tration frameworks that allow cloud users to easily program
and manage them at scale, which is the focus of work.

2.2.2 Network Attachment

The above deployments have used various designs to support
communication with accelerators. We specifically target the
setting where FPGAs are attached directly to an Ethernet
network, as in Microsoft’s Catapult system [11].

We choose to support network-attached accelerators for
several reasons. First, hardware network stacks have lower

latency [11], which is important for microservice-style com-
putation. Second, offloading the network stack to FPGA hard-
ware allows CPU cycles to be used for other computation.
Previous research [20, 37] has shown that there are total cost
of ownership (TCO) benefits in offloading networking oper-
ations to hardware rather than burning CPU cores that can
be sold to users. This is especially true for supporting high
bandwidth networking, which is becoming more and more
prevalent in the datacenter [22].

We choose to support communication over an Ethernet
network rather than a custom accelerator network, so we can
support disaggregated computation models. Additionally, a
custom network limits scalability of deployments, because
it is expensive to maintain a separate network. Microsoft
Catapult v2 moved to attaching its FPGAs directly to the
Ethernet network for these reasons [11].

To support this type of design, we need at minimum to have
a networking stack to allow communication over Ethernet.
For this, we leverage our TCP hardware stack used in pre-
vious work [37], with further modifications to fully support
integration with an application.

3 Flexible Cloud Compute Abstractions

In this section, we describe the resource abstractions that
must be provided by the datacenter compute orchestrator to
network-attached CPUs and FPGAs in order to flexibly ex-
pose them to cloud users. We then discuss two application
use cases that are made possible through our proposed ab-
stractions, namely serverless computing and network function
virtualization.

3.1 Heterogeneous Compute Orchestration
Our goal is for FPGAs to effectively supplement CPUs as
first-class compute resources in the datacenter. To do so, the
datacenter compute orchestrator must provide the following
abstractions for virtualizing and managing both CPUs and
FPGAs.

Resource Provisioning. The datacenter orchestrator should
be able to allocate and deploy computation on either CPUs or
FPGAs at a large scale. This requires compute resources to
be allocated, configured, and programmed over the network.

Automatic Network Configuration. Newly provisioned
compute resources must be made accessible to the user and to
the rest of the datacenter hardware by assigning network con-
figurations. Software-defined networking (SDN) controllers
must be able to assign IP addresses to newly provisioned com-
pute resources in addition to being able to configure routing
tables and firewall settings based on user preferences. Sim-
ilarly, for deallocated or failed resources, SDN controllers
should be able to clean up prior network configurations to
avoid requests hitting dead nodes.

3



ip_hdr

tcp_hdr

pkt_descTCP
HW

App Wrapper

App Logic

tcp_hdr

pkt_desc

ip_hdr
MAC

DRAM

Network
Control

Processor

ge
t p

ac
ke

t
bo

dy

ca
lc

ch
ec

ks
um

pu
t o

n 
w

ire

ve
rif

y
ch

ec
ks

um

ge
t f

ro
m

w
ire

st
or

e 
pa

ck
et

bo
dy

send queue

recv queue

qu
eu

e_
ar

b
qu

eu
e_

de
m

ux

data engine

App Controller
I/O Engine

Figure 1: Overview of an FPGA node in our system running a single user application.

Autoscaling and Load Balancing. Each compute resource
should expose an interface to the user to implement
application-defined load monitoring, based upon which the
resource can be scaled up or down. Replicated resources must
be transparently load balanced to avoid overutilization of a
single resource.

Migration. Each compute resource should expose interfaces
to the user to specify application-specific checkpointing logic
that can save computational state and restart it on a different
node of the same type if need be. The orchestrator should also
make sure that network configurations are replicated on the
newly migrated node.

Fault Tolerance. Each compute resource should send out
periodic heartbeats to verify that the resource is operational.
In case of failures detected by the lack of timely heartbeats,
the compute orchestrator should step in to resolve the issue,
by notifying the user about the failure, cleaning up old re-
source configurations, and possibly migrating existing state
to a newly allocated compute resource.

3.2 Use Cases
In this section, we describe two powerful use cases for data-
center CPUs and FPGAs that are enabled by the aforemen-
tioned resource abstractions.

3.2.1 Serverless Computing

We first envision a severless computing platform that can sup-
port stateless CPU and FPGA functions [30, 7, 6, 25]. This
use case is motivated by the observation that developers pri-
marily care about running their specified application logic,
while avoiding low-level hardware details such as the type of

hardware or the number of instances that the computation runs
on [35]. Putting CPUs and FPGAs together into composable
serverless pipelines would tremendously benefit such devel-
opers as it development burden and enables a pay-on-demand
model for FPGA hardware. It also benefits the datacenter op-
erator who can now perform hardware provisioning, network
configuration and function orchestration in a way so as to
maximize resource utilization.

In this new framework, developers can pipeline functions
together using a high-level programming framework to form
an application. To do so, they specify relevant function logic
for both CPUs and FPGAs, or choose from a library of existing
CPU and FPGA implementations of popular functions offered
by the cloud provider. Functions in a pipeline are automati-
cally configured and deployed by the serverless framework
upon function invocation. The framework manages the run-
time behaviour of the system under varying load and failures
by transparently switching to FPGA-based deployments if
available, and autoscaling if necessary.

3.2.2 Network Function Virtualization

The second use case for datacenter CPUs and FPGAs involves
network function virtualization (NFV). Network functions
implement some computation on network traffic, typically to
improve performance or security (e.g., via deep packet inspec-
tion). They can be strung together to create distributed chains
of computation. Network functions are often run on fixed
function, dedicated hardware, but this creates management
and scaling issues [50, 42], so NFV moves this functionality
into general-purpose virtual machines to address management
and scaling issues. However, packet processing performance
is highly important for network functions [42], as they typi-

4



cally require line rate processing.
A more flexible deployment of cloud FPGAs would keep

network functions implemented in hardware for performance
at high bandwidths, but use our proposed compute resource
abstractions to provide better virtualization to the hardware
network functions to address the original issues of manage-
ment and scaling. In such a system, each virtual network
function (VNF) can be deployed on either on a CPU or on an
FPGA. Depending on task complexity, several network func-
tion modules can be chained together into pipelines. Larger
bandwidths and network traffic variation can be handled by
autoscaling, thereby regulating NFV performance on both
CPUs and custom hardware while minimizing manual devel-
oper configuration. Finally, faults are handled transparently
which minimizes network downtime.

4 System Design for Disaggregated FPGAs

To support CPU-like cloud abstractions on disaggregated FP-
GAs, we develop two components. The first is a per-node
FPGA hardware platform which provides a uniform interface
to user applications and contains infrastructure to configure
and manage FPGAs remotely. The second is the datacenter-
wide compute orchestrator that can jointly manage CPU,
FPGA and networking resources in the datacenter. We de-
scribe both these components in detail and explain how they
help support our proposed resource abstractions.

4.1 FPGA Node Hardware Platform
A diagram of the hardware platform on a node in our system
is shown in Figure 1. Each node contains an FPGA chip, a
microcontroller, and optionally local resources such as storage
and memory. We describe these components below.

4.1.1 FPGA Shell and Roles

Similar to existing datacenter FPGA deployments [47, 3], the
FPGA platform consists of a cloud provider-trusted shell that
abstracts low-level hardware details from user applications,
and one or more roles, which are untrusted user applications
that run on the FPGA. We reuse parts of shells built in prior
work [57, 33].

The FPGA shell provides two key features. First, it provides
a uniform resource abstraction to all roles to local and remote
resources. This is done by implementing on-chip interfaces
to the control processor, memory, storage and the network.

For storage device access, we implement the PCIe inter-
face over which FPGA roles can read or write disk blocks.
For networking, we implement an on-chip TCP/IP stack that
can communicate over the datacenter network (described in
Section 4.1.3).

Second, the shell provides a multiplexing and isolation
framework to safely share the FPGA chip among multiple

roles. We support both spatial and temporal multiplexing of
roles on the FPGA chip [57, 33]. While spatial multiplexing
is achieved by the FPGA synthesizing tool, temporal multi-
plexing requires application-specific logic to checkpoint and
restore the application state, which we either provide or permit
the developer to implement. The isolation stack also provides
a virtualized resource access interface that is replicated for
each role and multiplexes these on the actual resource inter-
face implemented on the shell. This prevents interference
between roles attempting to access the same resource at the
same time.

4.1.2 Control Processor

The control processor is a low-resource CPU attached to
the FPGA chip which periodically coordinates with the
datacenter-wide compute orchestrator to perform a variety of
management operations. It provides FPGA provisioning by
obtaining FPGA bitstreams from the orchestrator and uses
them to reconfigure a part of or the entire FPGA chip. It also
performs local network and system configurations in case
FPGA roles must be migrated or restarted. Finally, the control
processor is also responsible for load and health monitoring
of the FPGA node. It coordinates with on-chip load and health
monitors present in the FPGA roles and aggregates them into
a hearbeat message that is sent to the datacenter-wide compute
orchestrator.

4.1.3 TCP/IP Networking Stack

To support network access on FPGA nodes, we build upon
and integrate a TCP/IP stack from our prior work [37].

On the application side, the TCP stack exposes queues
of packet payload descriptors that the application can
write into using its flow ID. Each descriptor contains two
fields, packet_payload_addr and packet_payload_len,
that specify the address and length of the associated packet
payload. Each application has a send queue, which it writes
packet payload descriptors into, and a read queue, which it
reads packet payload descriptors from. On the network side,
the TCP block outputs TCP and IP headers and the associ-
ated packet payload descriptor and takes as input TCP and IP
headers and the packet payload descriptor.

The I/O Engine is primarily responsible for directly inter-
facing with the MAC. On the receive side, it reads a packet
from the MAC and parses the headers to separate the TCP
and IP headers from the payload. It verifies the checksum
and then copies the payload to DRAM, writing it to a pre-
configured region of memory for the FPGA role and creating
an associated packet payload descriptor. It passes the packet
payload descriptor and the TCP and IP headers to the TCP
block, which forwards it to the application. On the send side,
the I/O engine takes TCP and IP headers and a packet payload
descriptor from the TCP block. It uses the packet payload

5



Figure 2: Overview of the compute orchestrator.

descriptor to retrieve the packet payload. It then calculates
the checksum and outputs the whole packet to the MAC. The
I/O engine is also responsible for forwarding TCP setup and
teardown packets to the control processor managing the node.

4.2 Datacenter-Wide Compute Orchestration
The compute orchestrator is logically centralized and coordi-
nates the execution of all user-visible CPUs and FPGAs in
the datacenter. It forms the control plane of the datacenter
resources and is responsible for appropriately configuring re-
sources in the dataplane (i.e., the CPU and FPGA pools, and
the datacenter network). Figure 2 shows a high-level diagram
of the components of the compute orchestrator, which include
the global resource manager (GRM), various per-resource
controllers, a resource monitor and a global image store for
CPU container and FPGA images.

The GRM is responsible for resource provisioning, affect-
ing autoscaling decisions, and handling migrations upon fail-
ures. It specifies provisioning decisions to the CPU and FPGA
controllers which carry them out on actual CPU and FPGA
resources. The GRM also manages the SDN controller which
assigns IP addresses to nodes and sets up routing tables and
firewalls between heterogeneous clusters of user nodes. The
resource monitor is responsible for tracking heartbeats and
monitoring load across the datacenter by communicating with
per-node runtimes. The global image store is a large dis-
tributed store that contains all the cloud-provided and user-
submitted container images and FPGA bitstreams that can be
deployed on datacenter hardware. These components interop-
erate to provide the following abstractions to virtualize CPU
and FPGA compute resources in the cloud.

4.2.1 Resource Provisioning

The main component responsible for provisioning the pool
of CPU and FPGA resources in the datacenter are the GRM
and the per-resource controllers. When a workload is run for
the first time, the GRM notifies the controllers to provision
the corresponding target hardware platform (either CPU or

FPGA) based on resource availability and user preferences.
Subsequently, the GRM informs the SDN controller to set up
network configurations for the newly provisioned node. To
do so, the SDN controller assigns an IP address to the node,
and sets up routing tables for the set of compute resources
that the node communicates with. After finishing systems
and network configurations, the GRM obtains the workload
image from the central image store and deploys it on the
provisioned hardware platform and returns the IP address of
the provisioned node to the datacenter user.

4.2.2 Autoscaling

The initial provisioning may later be modified by the GRM
in response to variations in load. Application load is con-
tinuously monitored at a per-node level and reported to the
datacenter-wide load monitor. As explained in Section 2, CPU
compute is already provisioned in reaction to load by mod-
ern orchestration frameworks such as Kubernetes [46] and
OpenFaaS [44]. Similarly, for our abstractions to function
seamlessly across hardware platforms, the FPGA provisioned
under our framework must also dynamically react to load.
As we cannot modify the amount of resources allocated to
FPGAs in a granular manner similar to CPUs, we choose to
perform FPGA autoscaling at the granularity of FPGA roles.
For example, if a user is frequently using the functionality
provided by specific bitfile, the framework should scale up
the number of FPGAs programmed with that bitfile to handle
the load. This means that the GRM may increase or decrease
copies of the deployed FPGA roles. A load balancer, which
is allocated on a separate CPU node, is then used to distribute
task requests among replicated compute instances. Provision-
ing of autoscaled instances is handled in a similar manner as
in Section 4.2.1.

4.2.3 Automatic Network Configuration

The SDN controller is responsible for configuring the data-
center network. There are three scenarios where the SDN con-
troller must modify network configurations. Upon resource
provisioning, the SDN controller assigns an appropriate IP
address to the new node, and sets up routing tables leading to
and originating at the node. Depending on the user’s prefer-
ences, the assigned IP may be a part of a private virtualized
network, or public to the internet. The IP address and associ-
ated routes are cleared up upon resource deallocation. Finally,
when a failure is detected, the SDN controller immediately
reprograms the network to prevent traffic from going to the
failed node until a new one is brought up in its place. Al-
ternatively, this traffic can be sent to previously replicated
instances of the failed node if they exist.

6



4.2.4 Migration

The GRM handles migration of computation between two
identical compute resources. To guarantee transparency to the
user, the GRM ensures that the same network configuration
as before is made available on the node that is migrated to,
in addition to transferring application state. As application
state on FPGAs is difficult to capture without explicit user
interfaces, we rely on the user to provide checkpointing logic
for FPGAs. In case of CPUs, we additionally provide the
option of using existing checkpointing frameworks [15, 4].
The checkpointed state is saved in the image store, and is
forwarded to a newly provisioned node by the GRM upon
migration.

4.2.5 Fault Tolerance

The heartbeat tracker module in the resource monitor periodi-
cally receives heartbeats from each deployed application. On
FPGA nodes, such heartbeats are sent by the control proces-
sor, which may obtain it from FPGA roles. In case a heartbeat
is not received within a certain duration, the tracker times
out and corresponding node is considered to have failed. The
node is also considered failed upon explicit failure notification
by the node-level control processor. In these cases, the heart-
beat tracker notifies the GRM about the failure, which in turn
informs the SDN controller to unassign old network configu-
rations, and then attempts to restart or migrate the most recent
application state on a different node after re-provisioning it
with the same image and network configuration as before.

5 Evaluation

We plan to deploy our framework on Microsoft Catapult FP-
GAs run on an internal cluster [47, 11, 21].

Our per-FPGA node infrastructure is built on top of Cata-
pult’s shell, which already provides interfacing with various
datacenter resources [51]. However, Catapult FPGAs do not
have low-resource control processors, so we expect to provide
the same functionality using the FPGA’s host CPUs.

Each component of the compute orchestrator will be de-
ployed on separate CPU nodes in our system via Open-
Stack [45], or Microsoft’s equivalent cluster management
framework.

5.1 Short Term
We would like to answer the following questions in the short
term:

1. Can we get Microsoft Catapult to work?

2. What is the resource utilization of our shell when basic
accelerator support is implemented?

3. What are basic bandwidth/latency numbers for the net-
working components of our shell?

5.2 Long Term
We plan to perform the following benchmarks:

1. How much FPGA logic does the full shell consume on
Catapult FPGAs? What is the FPGA clock frequency
with a shell-only design?

2. What is the application runtime overhead of the shell’s
isolation framework? That is, does running a program
alone perform similarly as multiplexed accelerators?

3. What is the performance (latency distribu-
tion/bandwidth) of applications running in our
framework versus their CPU-based "equivalents"?

4. How does the system behave under varying load? Does
autoscaling work?

5. How does performance degrade when there are failures?

5.3 Case Studies
We examine the general applicability of our cloud compute
resource abstractions by performing the following case stud-
ies.

5.3.1 Serverless Computing

In this case study, we extend the typically CPU-only severless
computing paradigm to support both CPU and FPGA func-
tions [30, 7, 6, 25]. That is, our serverless framework allows
using either hardware resource to run user-specified cloud
functions. Applications consist of pipelines of CPU contain-
ers and FPGA application roles, each of which performs the
task of a single cloud function. Each function has well-defined
input-output specifications (e.g., a function to decode a video
or to classify an image), and can be chained together to form
larger applications. Such pipelines have been shown to be a
good fit to perform video, image, and sound processing [32],
which we evaluate in this case study.

During steady state, we expect our hardware-enabled server-
less pipelines to have better latency and throughput than its
CPU-only counterpart. This will be partially due to enabling
the use of accelerators for application logic and partially due
to our shell streamlining the management of the accelerators.
When adding capacity, we expect our performance to be simi-
lar to a CPU-based system. It has been shown that serverless
computing performance depends on whether a function has
been run recently or if a new container must be started for
the function [49], called a cold start. However, our framework
must similarly deal with FPGA reprogramming latencies and
initializing routing tables.

5.3.2 Network Function Virtualization

Our second case study implements network function virtual-
ization on our resource orchestration framework framework,

7



and will specifically focus on supporting network functions
for deep packet inspection. Packet analysis hardware will
be deployed in a node as a CPU or as an FPGA accelerator.
Depending on the complexity of the analysis, several packet
analysis modules can be chained together, including both tra-
ditional CPU-based network functions as well as specialized
FPGA functions. We will show that our framework will be
able to autoscale the deployment in reaction to traffic load to
maintain line rate.

6 Related Work

In addition to the real-world FPGA deployments described in
Section 2, several other prior works provide varying types and
degrees of cloud abstractions for FPGAs. Most prior works
use OpenStack [45] to implement their systems.

Chen et al. use OpenStack to virtualize FPGAs [12]. They
couple PCIe-attached FPGAs with a KVM-based software hy-
pervisor, and establish coordination between OpenStack and
the software hypervisor to manage the FPGAs. However, they
do not consider direct network attachment, which is essential
to support large-scale applications, especially with increasing
datacenter bandwidths [37].

Byma et al. propose to deploy network-attached FPGAs as
OpenStack resources [10]. In their case, the node-level hyper-
visor is programmed into hardware and communicates to the
OpenStack controller over the network. The FPGA applica-
tion region is split into four smaller regions programmed via
partial reconfiguration, which allows multiple users to share a
single FPGA device. However, this infrastructure is only built
for a 1 Gbps network port and only targets node-level support
for cloud FPGAs.

Tarafdar et al. develop a framework to create FPGA clus-
ters in an OpenStack-managed cloud [53]. Their framework
generates OpenStack calls needed to reserve the compute
devices, configures the network connections (with MAC ad-
dresses), and creates a ready-to-use cluster network device
that can interact with any other network device in the data
center. However, their framework requires users to provide a
cluster description and FPGA mappings, which prevents true
virtualization of FPGA resources. Our work enables cloud
providers to automatically allocate and configure cloud FP-
GAs alongside CPUs, in addition to other orchestration ab-
stractions, making the underlying hardware transparent to
cloud users.

Building upon their previous work, Tarafdar et al. also
present a framework for creating pipelines of heterogeneous
virtualized network functions, using either CPUs or FP-
GAs [52]. They build a service chain scheduler and extend
OpenStack’s SDN controller to allocate and connect CPU
and FPGA resources, allowing for incremental hardware de-
ployment of virtual network functions. However, they do not
examine other cloud abstractions such as autoscaling and fault
tolerance.

Eskandari et al. implement modular communication layers
(including MPI) on both CPUs and FPGAs to achieve a com-
mon communication interface for tasks that can run either
hardware platform [17]. This is orthogonal to our work, but
we can adopt it for greater flexibility in deploying our FPGA
applications.

IBM’s research on cloudFPGAs shares many goals with our
work. They have experimented with network-attached FPGA
prototypes that target hyperscale datacenters [56, 1, 55]. These
FPGAs are provisioned via OpenStack, can be configured via
OpenStack’s SDN controller, and can be operated by cloud
users who obtain an IP address to the target FPGA.

IBM recently extended this system with partial reconfig-
uration over the network to enable direct programming of
FPGA nodes [48]. However, they still embed a tiny control
processor alongside each FPGA which is used for low-level
management such as resetting the FPGA, setting IP addresses,
or to program the on-chip flash memory. Their FPGAs expose
a RESTful API that supports performing remote bitfile-based
FPGA reconfiguration, obtaining node status, and configur-
ing routing information in order manage FPGAs. They run
an MPI workload to show FPGA-CPU interoperability, al-
beit with some modifications. All in all, the abstractions they
provide are very similar to our work. However, their FPGA
networking stack can only support 10Gbps TCP/IP network-
ing. Furthermore, they do not provide transparent autoscaling
or fault tolerance monitoring, which we believe are important
abstractions to fully virtualize datacenter FPGAs.

Finally, resource orchestration mechanisms are also avail-
able for other accelerators such as GPUs and TPUs. For ex-
ample, GPUs are typically made available over the PCIe bus
similar to Amazon F1 FPGAs [23]. However, this does not dis-
aggregate GPUs as individual compute units on the datacenter
network, which is a key focus of our work. On the Google
Cloud Platform, CPUs, GPUs and TPUs can be programmed
using the TensorFlow framework [23], which allows compos-
ing multiple CPUs and TPUs to run deep learning inference
and training models. These resources can be scaled up or
down based on load via the Google Kubernetes Engine [26].
However, unlike our framework, TensorFlow is a relatively
restricted programming interface which is specific to deep
learning applications. Our work targets FPGAs, enables easy
interoperatbility between general-purpose CPUs and FPGAs,
supports multi-tenancy, and is amenable to a wide variety of
workload types.

7 Conclusion and Future Work

In this work, we proposed flexible resource abstractions to
treat network-attached FPGAs as first-class compute citizens
in the datacenter alongside CPUs. Our next steps are to imple-
ment these abstractions on Microsoft Catapult FPGAs and to
evaluate their efficacy by developing a serverless framework
and composing network function virtualization pipelines.

8



References

[1] Francois Abel, Jagath Weerasinghe, Christoph Hagleit-
ner, Beat Weiss, and Stephan Paredes. “An FPGA
platform for hyperscalers”. In: Symposium on High-
Performance Interconnects (HOTI). 2017 (p. 8).

[2] Alibaba. Deep Dive into Alibaba Cloud F3 FPGA as a
Service Instances. Accessed: 2020-01-29. URL: https:
/ / www . alibabacloud . com / blog / deep - dive -
into-alibaba-cloud-f3-fpga-as-a-service-
instances_594057 (pp. 1, 3).

[3] Amazon. Amazon EC2 F1 Instances. Accessed: 2019-
10-11. URL: https : / / aws . amazon . com / ec2 /
instance-types/f1/ (pp. 1, 3, 5).

[4] Jason Ansel, Kapil Arya, and Gene Cooperman.
“DMTCP: Transparent checkpointing for cluster com-
putations and the desktop”. In: 2009 IEEE Interna-
tional Symposium on Parallel & Distributed Process-
ing. 2009 (p. 7).

[5] Michael Armbrust, Armando Fox, Rean Griffith, An-
thony D Joseph, Randy Katz, Andy Konwinski, Gunho
Lee, David Patterson, Ariel Rabkin, Ion Stoica, et al.
“A view of cloud computing”. In: Communications of
the ACM (2010) (pp. 1, 2).

[6] “AWS Lambda”. In: (). https://aws.amazon.com/
lambda/ (pp. 2, 4, 7).

[7] “Azure Functions”. In: (). https : / / azure .
microsoft . com / en - us / services / functions/
(pp. 2, 4, 7).

[8] Luiz André Barroso, Urs Hölzle, and Parthasarathy
Ranganathan. “The datacenter as a computer: Design-
ing warehouse-scale machines”. In: Synthesis Lectures
on Computer Architecture 13.3 (2018), pp. i–189 (p. 1).

[9] David Bernstein. “Containers and cloud: From LXC
to Docker to Kubernetes”. In: IEEE Cloud Computing
(2014) (p. 2).

[10] Stuart Byma, J Gregory Steffan, Hadi Bannazadeh, Al-
berto Leon Garcia, and Paul Chow. “FPGAs in the
cloud: Booting virtualized hardware accelerators with
OpenStack”. In: International Symposium on Field-
Programmable Custom Computing Machines (FCCM).
2014 (p. 8).

[11] Adrian Caulfield, Eric Chung, Andrew Putnam, Hari
Angepat, Jeremy Fowers, Michael Haselman, Stephen
Heil, Matt Humphrey, Puneet Kaur, Joo-Young Kim,
Daniel Lo, Todd Massengill, Kalin Ovtcharov, Michael
Papamichael, Lisa Woods, Sitaram Lanka, Derek
Chiou, and Doug Burger. “A Cloud-Scale Accelera-
tion Architecture”. In: Proceedings of the 49th Annual
IEEE/ACM International Symposium on Microarchi-
tecture. IEEE Computer Society, Oct. 2016 (pp. 1, 3,
7).

[12] Fei Chen, Yi Shan, Yu Zhang, Yu Wang, Hubertus
Franke, Xiaotao Chang, and Kun Wang. “Enabling
FPGAs in the cloud”. In: Conference on Computing
Frontiers. 2014 (p. 8).

[13] IBM Research – China. OpenPOWER Cloud – Accel-
erating Cloud Computing. 2019. URL: https://www.
research . ibm . com / labs / china / supervessel .
html (pp. 1, 3).

[14] Christopher Clark, Keir Fraser, Steven Hand, Jacob
Gorm Hansen, Eric Jul, Christian Limpach, Ian Pratt,
and Andrew Warfield. “Live migration of virtual ma-
chines”. In: Symposium on Networked Systems Design
and Implementation (NSDI). 2005 (pp. 1, 2).

[15] CRIU: Checkpoint-Restore in Userspace. Accessed:
2020-02-05. URL: https://www.criu.org/Main_
Page (p. 7).

[16] David Patterson. Domain Specific Architectures for
Deep Neural Networks: Three Generations of Tensor
Processing Units (TPUs). Allen School Distinguished
Lecture, https://www.youtube.com/watch?v=
VCScWh966u4. 2019 (p. 1).

[17] Nariman Eskandari, Naif Tarafdar, Daniel Ly-Ma, and
Paul Chow. “A modular heterogeneous stack for de-
ploying FPGAs and CPUs in the data center”. In: Pro-
ceedings of the 2019 ACM/SIGDA International Sym-
posium on Field-Programmable Gate Arrays. 2019,
pp. 262–271 (p. 8).

[18] Hadi Esmaeilzadeh, Emily Blem, Renée St. Amant,
Karthikeyan Sankaralingam, and Doug Burger. “Power
limitations and dark silicon challenge the future of mul-
ticore”. In: ACM Transactions on Computer Systems
(TOCS) 30.3 (2012), pp. 1–27 (p. 1).

[19] Facebook. Accelerating Facebook’s infrastructure
with application-specific hardware. Accessed: 2019-
10-11. URL: https : / / engineering . fb . com /
data - center - engineering / accelerating -
infrastructure/ (p. 1).

[20] Daniel Firestone, Andrew Putnam, Hari Angepat,
Derek Chiou, Adrian Caulfield, Eric Chung, Matt
Humphrey, Kalin Ovtcharov, Jitu Padhye, Doug
Burger, Dave Maltz, Albert Greenberg, Sambhrama
Mundkur, Alireza Dabagh, Mike Andrewartha, Vivek
Bhanu, Harish Kumar Chandrappa, Somesh Chaturmo-
hta, Jack Lavier, Norman Lam, Fengfen Liu, Gautham
Popuri, Shachar Raindel, Tejas Sapre, Mark Shaw,
Gabriel Silva, Madhan Sivakumar, Nisheeth Srivas-
tava, Anshuman Verma, Qasim Zuhair, Deepak Bansal,
Kushagra Vaid, and David A. Maltz. “Azure Accel-
erated Networking: SmartNICs in the Public Cloud”.
In: 15th USENIX Symposium on Networked Systems
Design and Implementation (NSDI). Apr. 2018 (pp. 1,
3).

9



[21] Jeremy Fowers, Kalin Ovtcharov, Michael Pa-
pamichael, Todd Massengill, Ming Liu, Daniel Lo,
Shlomi Alkalay, Michael Haselman, Logan Adams,
Mahdi Ghandi, Stephen Heil, Prerak Patel, Adam
Sapek, Gabriel Weisz, Lisa Woods, Sitaram Lanka,
Steve Reinhardt, Adrian Caulfield, Eric Chung, and
Doug Burger. “A Configurable Cloud-Scale DNN
Processor for Real-Time AI”. In: Proceedings of
the 45th International Symposium on Computer
Architecture, 2018. ACM, June 2018 (pp. 1, 3, 7).

[22] FS. MTP/MPO Cabling System: A Panacea for Data
Center. Accessed: 2020-02-24. URL: https : / /
community . fs . com / blog / mtpmpo - cabling -
system-a-panacea-for-data-center.html (p. 3).

[23] Google. Cloud GPUs. Accessed: 2020-02-06. URL:
https://cloud.google.com/gpu (p. 8).

[24] Google. Google’s scalable supercomputers for ma-
chine learning, Cloud TPU Pods, are now publicly
available in beta. Accessed: 2019-10-11 (p. 1).

[25] “Google Cloud Functions”. In: (). https://cloud.
google.com/functions/ (pp. 2, 4, 7).

[26] Google Kubernetes Engine TPUs. Accessed: 2020-02-
05. URL: https://cloud.google.com/kubernetes-
engine/docs/concepts/tpus (p. 8).

[27] Nathan Goulding, Jack Sampson, Ganesh Venkatesh,
Saturnino Garcia, Joe Auricchio, Jonathan Babb,
Michael B Taylor, and Steven Swanson. “GreenDroid:
A mobile application processor for a future of dark sil-
icon”. In: 2010 IEEE Hot Chips 22 Symposium (HCS).
IEEE. 2010, pp. 1–39 (p. 1).

[28] Nikos Hardavellas, Michael Ferdman, Babak Falsafi,
and Anastasia Ailamaki. “Toward dark silicon in
servers”. In: IEEE Micro 31.4 (2011), pp. 6–15 (p. 1).

[29] Benjamin Hindman, Andy Konwinski, Matei Zaharia,
Ali Ghodsi, Anthony D. Joseph, Randy Katz, Scott
Shenker, and Ion Stoica. “Mesos: A Platform for Fine-
Grained Resource Sharing in the Data Center”. In: Net-
worked Systems Design and Implementation (NSDI).
2011 (p. 2).

[30] Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti,
Chia-Che Tsai, Anurag Khandelwal, Qifan Pu,
Vaishaal Shankar, Joao Carreira, Karl Krauth, Neer-
aja Yadwadkar, et al. “Cloud programming simplified:
a berkeley view on serverless computing”. In: arXiv
preprint arXiv:1902.03383 (2019) (pp. 1, 2, 4, 7).

[31] Norman P. Jouppi, Cliff Young, Nishant Patil, David
Patterson, Gaurav Agrawal, Raminder Bajwa, Sarah
Bates, Suresh Bhatia, Nan Boden, Al Borchers, and et
al. “In-Datacenter Performance Analysis of a Tensor
Processing Unit”. In: SIGARCH Computer Architec-
ture News 45.2 (June 2017), pp. 1–12 (p. 1).

[32] Ram Srivatsa Kannan, Lavanya Subramanian, Ashwin
Raju, Jeongseob Ahn, Jason Mars, and Lingjia Tang.
“GrandSLAm: Guaranteeing SLAs for jobs in microser-
vices execution frameworks”. In: European Confer-
ence on Computer Systems (EuroSys). 2019 (p. 7).

[33] Ahmed Khawaja, Joshua Landgraf, Rohith Prakash,
Michael Wei, Eric Schkufza, and Christopher J Ross-
bach. “Sharing, protection, and compatibility for recon-
figurable fabric with AmorphOS”. In: Operating Sys-
tems Design and Implementation (OSDI). 2018 (p. 5).

[34] Moein Khazraee, Lu Zhang, Luis Vega, and Michael
Bedford Taylor. “Moonwalk: NRE Optimization in
ASIC Clouds”. In: Proceedings of the Twenty-Second
International Conference on Architectural Support for
Programming Languages and Operating Systems (AS-
PLOS). New York, NY, USA: ACM, 2017, pp. 511–
526 (p. 1).

[35] Jaewook Kim, Tae Joon Jun, Daeyoun Kang, Dohyeun
Kim, and Daeyoung Kim. “GPU Enabled Serverless
Computing Framework”. In: Euromicro International
Conference on Parallel, Distributed and Network-
based Processing (PDP). 2018 (p. 4).

[36] “Knative”. In: (). https://github.com/knative/
(p. 2).

[37] Katie Lim, Pratyush Patel, Tom Anderson, and Michael
B. Taylor. A Quantitative Analysis of Transport-
LevelNetworking for Disaggregated Accelerators.
Tech. rep. University of Washington, Feb. 2020 (pp. 2,
3, 5, 8).

[38] Liang Luo, Jacob Nelson, Luis Ceze, Amar Phan-
ishayee, and Arvind Krishnamurthy. “Parameter hub: a
rack-scale parameter server for distributed deep neural
network training”. In: Proceedings of the ACM Sympo-
sium on Cloud Computing. 2018, pp. 41–54 (p. 1).

[39] Ikuo Magaki, Moein Khazraee, Luis Vega, and Michael
Taylor. “ASIC Clouds: Specializing the Datacenter”.
In: International Symposium on Computer Architecture
(ISCA). 2016 (p. 1).

[40] Microsoft. FPGA Web Service: Deploy Models on
FPGAs. Accessed: 2020-01-29. URL: https : / /
docs . microsoft . com / en - us / azure / machine -
learning/how- to- deploy- fpga- web- service
(p. 3).

[41] Jeffrey C. Mogul and John Wilkes. “Nines are Not
Enough: Meaningful Metrics for Clouds”. In: Work-
shop on Hot Topics in Operating Systems (HotOS).
2019 (p. 1).

10



[42] Leonhard Nobach, Oliver Hohlfeld, and David
Hausheer. “New Kid on the Block: Network Functions
Visualization: From Big Boxes to Carrier Clouds”. In:
SIGCOMM Comput. Commun. Rev. 46.3 (July 2018)
(p. 4).

[43] OpenAI. AI and Compute. Accessed: 2020-1-17. URL:
https://openai.com/blog/ai- and- compute/
(p. 1).

[44] “OpenFaaS”. In: (). https : / / github . com /
openfaas/faas (pp. 2, 3, 6).

[45] “OpenStack”. In: (). https://www.openstack.org/
(pp. 7, 8).

[46] “Production-Grade Container Orchestration”. In: ().
https://kubernetes.io/ (pp. 2, 3, 6).

[47] Andrew Putnam, Adrian Caulfield, Eric Chung, Derek
Chiou, Kypros Constantinides, John Demme, Hadi Es-
maeilzadeh, Jeremy Fowers, Jan Gray, Michael Hasel-
man, Scott Hauck, Stephen Heil, Amir Hormati, Joo-
Young Kim, Sitaram Lanka, Eric Peterson, Aaron
Smith, Jason Thong, Phillip Yi Xiao, Doug Burger,
Jim Larus, Gopi Prashanth Gopal, and Simon Pope. “A
Reconfigurable Fabric for Accelerating Large-Scale
Datacenter Services”. In: Proceeding of the 41st An-
nual International Symposium on Computer Architecu-
ture (ISCA). IEEE, June 2014, pp. 13–24 (pp. 1, 3, 5,
7).

[48] Burkhard Ringlein, Francois Abel, Alexander Ditter,
Beat Weiss, Christoph Hagleitner, and Dietmar Fey.
“System architecture for network-attached FPGAs in
the Cloud using partial reconfiguration”. In: Interna-
tional Conference on Field Programmable Logic and
Applications (FPL). 2019 (p. 8).

[49] Mohammad Shahrad, Jonathan Balkind, and David
Wentzlaff. “Architectural Implications of Function-as-
a-Service Computing”. In: Proceedings of the 52nd An-
nual IEEE/ACM International Symposium on Microar-
chitecture. MICRO ’52. 2019. ISBN: 9781450369381
(p. 7).

[50] Justine Sherry, Shaddi Hasan, Colin Scott, Arvind
Krishnamurthy, Sylvia Ratnasamy, and Vyas Sekar.
“Making Middleboxes Someone Else’s Problem: Net-
work Processing as a Cloud Service”. In: Proceed-
ings of the ACM SIGCOMM 2012 Conference on Ap-
plications, Technologies, Architectures, and Protocols
for Computer Communication. SIGCOMM ’12. 2012.
ISBN: 9781450314190 (p. 4).

[51] Ran Shu, Peng Cheng, Guo Chen, Zhiyuan Guo, Lei
Qu, Yongqiang Xiong, Derek Chiou, and Thomas
Moscibroda. “Direct Universal Access: Making Data
Center Resources Available to FPGA”. In: 16th
USENIX Symposium on Networked Systems Design

and Implementation (NSDI 19). Boston, MA: USENIX
Association, Feb. 2019, pp. 127–140. ISBN: 978-1-
931971-49-2 (pp. 3, 7).

[52] Naif Tarafdar, Thomas Lin, Nariman Eskandari, David
Lion, Alberto Leon-Garcia, and Paul Chow. “Hetero-
geneous virtualized network function framework for
the data center”. In: International Conference on Field
Programmable Logic and Applications (FPL). 2017,
pp. 1–8 (pp. 2, 8).

[53] Naif Tarafdar, Thomas Lin, Eric Fukuda, Hadi Ban-
nazadeh, Alberto Leon-Garcia, and Paul Chow. “En-
abling flexible network FPGA clusters in a heteroge-
neous cloud data center”. In: International Symposium
on Field-Programmable Gate Arrays (FPGA). 2017,
pp. 237–246 (p. 8).

[54] Ganesh Venkatesh, Jack Sampson, Nathan Gould-
ing, Saturnino Garcia, Vladyslav Bryksin, Jose Lugo-
Martinez, Steven Swanson, and Michael Bedford Tay-
lor. “Conservation cores: reducing the energy of ma-
ture computations”. In: ACM SIGPLAN Notices 45.3
(2010), pp. 205–218 (p. 1).

[55] Jagath Weerasinghe, Francois Abel, Christoph Hagleit-
ner, and Andreas Herkersdorf. “Disaggregated fpgas:
Network performance comparison against bare-metal
servers, virtual machines and linux containers”. In:
2016 IEEE International Conference on Cloud Com-
puting Technology and Science (CloudCom). 2016
(p. 8).

[56] Jagath Weerasinghe, Francois Abel, Christoph Hagleit-
ner, and Andreas Herkersdorf. “Enabling FPGAs in
hyperscale data centers”. In: International Conference
on Cloud and Big Data Computing (CBDCom). 2015
(p. 8).

[57] Jiansong Zhang, Yongqiang Xiong, Ningyi Xu, Ran
Shu, Bojie Li, Peng Cheng, Guo Chen, and Thomas
Moscibroda. “The Feniks FPGA operating system for
cloud computing”. In: Proceedings of the 8th Asia-
Pacific Workshop on Systems. 2017 (p. 5).

11


