
Designing UberLite: a Ride Aggregator Service∗

Guna Prasaad
University of Washington
guna@cs.washington.edu

Johan Per Vikstrom
University of Washington
pjvik@cs.washington.edu

1 INTRODUCTION

Up until two decades ago, the most important “technical”
decision made by executives in a newly formed business
was which enterprise-grade database software to purchase for

their IT needs? While they still make that decision, gone are
the days when a single omnipotent database was sufficient
to get a business up and running. The internet has revolu-
tionized the way businesses are built and operated. Most
internet-based applications today are designed for deploy-
ment at scale, which is often beyond the bounds of a single
complicated piece of database software. Hence, companies
today compose a plethora of services that together support
the various features of an user-facing application.
Micro-services is an architectural style that composes a

large system using a collection of services, where each (1)
has a well-defined specification that is easy to build, test,
deploy and maintain independently; (2) can communicate
with other micro-services using a pre-defined API; and (3)
owned by a small team of engineers who are responsible
for its overall health and performance. Needless to say that
each of these micro-services are - more often than not -
distributed systems themselves, potentially replicated across
global locations.
In this report, we aim to analyze how a complex applica-

tion can be decomposed into micro-services, pick the right
set of tools (open-source or otherwise) to build them and
analyze the various trade-offs involved at every stage. In
order to keep our exploration bounded, we will focus on one
application in the form of a case study. In this report, we
seek to design an Uber-like ride-aggregator service, called
UberLite. We wish to answer the following questions:
• What features does UberLite support?
• What are the high-level business objectives of UberLite,
and how do these impact the architecture of the system?

• How can we decompose UberLite into simpler micro-
services?

• How do the goals of UberLite translate into that of each
micro-service, in terms of performance, consistency and
availability guarantees?

• What does the workload for each micro-service look like?
How should the system handle temporary skews in the
workload?

∗This report was prepared as part of a graduate distributed systems course
(CSE 552) project at the University of Washington in Fall 2019.

• What is an ideal specification for themicro-services?What
is practical and why?

• How can we build these micro-services? What are some
open-source tools that can be used to build them? How
can they be compared? Why choose one over another?

• What are the limitations with the presented design?
The remainder of the report is structured as follows: Sec. 2

provides a brief background on ride-aggregator services and
presents the key business challenges in UberLite; Sec. 3
describes the anatomy of a trip within UberLite and how
a trip interacts with the services within UberLite; Sec. 4
describes the core UberLite services - from booking to the
actual ride and payment; In Sec. 5, we talk about the back-
ground services that feed into and power the core services;
Sec. 6 details our recommendations for implementing the
core and background services using open-source tools; In
the last section, Sec. 7, we attempt to summarize the lessons
learned over the course of working on the project.
Disclaimer: This report does not intend to propose a new

or novel, original micro-service architecture for UberLite, but

rather to study how one goes about the design process. We thank

Uber for sharing technical discussions and design decisions on

their engineering blog (https:// eng.uber.com/), which we have

used extensively to inspire the discussion in this report.

2 BACKGROUND

Ride aggregator services likeUberLite are the quintessential
two-sided marketplace [3], that connects riders to drivers.

The main advantage of such a service is its efficiency. The
traditional cab system operates through forced scarcity —
there can only ever be a certain number of cabs on the road
in any given city. As a result, fares are high. Cabs are not
around when you need them, like late at night or in the
pouring rain. Old-school taxis find fares either by driving
around and picking them off the street (street hail), or having
a dispatcher (with phoned-in customer requests) instructing
them on where to go. Both these methods have significant
limitations [3]:
• Poor supply allocation for drivers. Traditional cabs only
have a passenger in the car 30–50% of the time. To find
a fare, they’re dependent on taxi stands, centralized dis-
patchers, or being hailed from the street — they have no
other way to know where to go next.

https://eng.uber.com/


Guna Prasaad and Johan Per Vikstrom

• Low supply liquidity for riders. Traditional cabs congregate
in urban cores and high-transit areas, leaving outer bor-
oughs, suburbs, and “less profitable” areas under served.
Riders in these areas are often unable to get a cab at all,
or face long waits.
With UberLite-like services, on the other hand, users

request rides directly through the app. The nearest driver
is dispatched to their location, and they can be hailed again
immediately after drop-off.

The core value of the UberLite marketplace is reliability.
The fundamental business problem is balancing supply and
demand, both temporally and spatially. Uber uses dynamic

pricing to adjust supply of drivers and demand for rides.
When UberLite increases the price for rides in a region, it
• Incentivizes drivers to operate when/where there is higher
surge price due to higher returns (more drivers).

• Dis-incentivizes riders who do not want to pay a premium.
They either look for alternate means of transportation or
wait until surge price is turned off (less riders).

So the reliability metric of UberLite as a transportation ser-
vice is how well we can fulfill the demand for rides. Which
means UberLite must be able to distribute supply and de-
mand spatio-temporally. This becomes problematic because
rides can be long, we don’t know where riders will appear
before they do and big events/airports will cause big spikes
in demand. So UberLite must use the realtime data about
rides and historical data to dynamically adjust the price to
increase supply and fulfill as many rides as possible.
UberLite matches riders to drivers in the neighborhood.

For each such potential (rider, driver) pairs it computes sev-
eral features: distance to pickup, distance of the ride, the time
to pickup and the time to drop-off. While this could be fairly
straight-forward, just take a distance estimation and multi-
ply by the speed, the actual time-estimate also depends on
realtime monitors such as the traffic in the route. Using this
information UberLite arrives at a price estimate that takes
time, distance and the surge price multiplier into account.

p = ((cd ∗ d + ct ∗ t) ∗ s + cm) ∗ η ∗ (1 +T )
where cd is the cost per unit distance, d is the distance, ct
is the cost per unit time, t is the estimated time, s is surge
price multiplier for the pickup location, cm are miscellaneous
cost such as toll-fees, η is a discount rate based on different
promotions and such and T is the service tax in the region.

Once all these parameters have been computed for every
(driver, rider) pair in the batch we pick a good matching,
where a good matching is defined based on business goals,
and we do not delve into that here.

3 ANATOMY OF A TRIP IN UBERLITE

In this section, we provide a brief overview of the anatomy
of an UberLite trip. A trip in UberLite is modeled as an

asynchronous state-machine (refer Fig. 1). The state is re-
alized by a trigger-based framework allowing the services
to subscribe to changes on the state. The services can then
update the ride-state without having to know about what
should happen in the next state.

The state machine for a trip works as follows (refer Fig. 1).
• A trip state begins when the rider requests a ride.
• Request is posted to the core services (Sec. 4).
• Core marketplace services estimates the time, cost for
the ride and a potential driver for the ride and writes
the assignment back onto the store.

• The rider is presented with the cost, which is either
accepted or rejected.

• Once rider accepts, the ride is proposed to the driver.
The driver can either accept or decline the ride.

• If the driver declines the ride or doesn’t respond in
a timely manner (i.e. times out) and there have been
fewer than k attempts at driver assignment, UberLite
retries by posting the request back on the Marketplace.

• If the driver declines the ride and there have been k
attempts, we declare unsuccessful and notify the rider.

• If the driver accepts the ride, then the trip state ma-
chine moves to driver en-route to pickup.

• Once driver picks up the rider, the driver notifies the
system - updating the state to rider picked up.

• When the ride is complete and rider dropped off, the
driver notifies the system again.

• Once payment is fulfilled the state machine ends.

4 CORE SERVICES

We now discuss the core services within UberLite and how
they come together to power ride-matching in realtime.

4.1 Functional Specification

We briefly describe the functional specifications of the core
services below, and Fig. 4 depicts the data flow among them.

Map Indexing Service. Geo-locations within UberLite are
specified using a geo-spatial index called H3 [28] that was
developed and open-sourced by Uber. H3 is a hexagonal
hierarchical spatial index. It partitions the globe into a hi-
erarchy of hexagons as shown in Fig. 2. It assigns a unique
hierarchical index to each cell.

The H3 index of a resolution r cell begins with the appro-
priate resolution 0 base cell number. This is followed by a
sequence of r digits 0 − 6, where each ith digit di specifies
one of the 7 cells centered on the cell indicated by the coarser
resolution digits d1 through di−1 as shown in Fig. 3. A local
hexagon coordinate system is assigned to each of the resolu-
tion 0 base cells and is used to orient all hierarchical indexing
child cells of that base cell. The assignment of digits 0 − 6 at



Designing UberLite: a Ride Aggregator Service

Fig. 1. State machine for a trip maintained in the Trip Service

Fig. 2. H3 index divides a geographical region into a

hierarchical hexagonal grid.

Fig. 3. H3 CPI Scheme [28]

each resolution uses a Central Place Indexing arrangement.
This indexing scheme is key to how UberLite organizes and
operates on map data.

Driver Discovery Service (DRS). The driver discovery ser-
vice maintains the current location of all active drivers in
the marketplace in realtime. The primary role of DRS is to
identify potential drivers for a ride, given the location of a
rider. Finding drivers in the “neighborhood” can be decom-
posed into a set of range queries on the H3 index. Location
of active drivers are constantly monitored and updated in
realtime - the driver client sends the current GPS location
periodically to the service.

Route Service (RS). Route service is responsible for finding
potential routes from point A to point B. More specifically,
given the current location of the driver, pick up and destina-
tion, RS figures out k potential routes for the driver, both for
the pickup and the actual ride. We find more than one route
since the shortest distance route may not be the shortest one
in terms of time.



Guna Prasaad and Johan Per Vikstrom

Time Estimation Service (TES). TES has two specific func-
tions: (1) Monitor traffic on the roads within the area of
service and maintain a heat map; (2) Use the heat map to
estimate time to perform a ride given the route.
The heat map specifies a hotness parameter α , (α ≥ 1)

that is a time multiplier used to estimate time taken to cover
a given stretch of the road with traffic. This heat map can
either be maintained in-house or could be bought directly
from other map service providers such as Google.
TES also estimates the time taken to get from point A to

point B via a given route. TES uses the traffic information to
estimated time to pickup and drop-off. It is very important
to make an accurate time estimation the cost estimate for
the ride depends on estimated time as mentioned in Sec. 3.

Surge Pricing Service (SPS). As mentioned earlier, dynamic
pricing is key to balancing supply and demand spatio-temporally
in UberLite. SPS is the micro-service endpoint to obtain
surge pricing multiplier for a given hexagon index. Surge
pricing multipliers are updated in realtime based on supply-
demand in every neighborhood. This endpoint simply queries
the pre-computed values.

Discounts and Promotions Service (DPS). UberLite pro-
vides a variety of discounts and promotions for riders as
well as drivers to encourage driving or taking rides. This
information is provided by the discounts and promotions
service. These values are pre-computed on a daily basis.

Tax & Tolls Service (TTS). Maintains the service tax details
for each city, state, etc. that is queried for cost estimations.
Also maintains tolls or other miscellaneous fee information
that is specific to a route. Specifically given a route, it returns
the total accumulated cost of such miscellaneous fee.

Price Estimation Service (PES). The price estimation ser-
vice computes estimated cost for a given route and rider,
driver pair using the formula specified in Sec. ??. This ser-
vice communicates with all other services to obtain relevant
information to compute the estimated cost.

Matching Service (MS). The matching service takes in a set
of (rider, driver, route) triplets and computes the best driver
route matching for the set of riders. It takes a feature vector
for each (rider, driver, route) triplet that includes all relevant
information about the match.

4.2 Analysis

We now analyze (Table 1) the access patterns (update/read
traffic), consistency and computational requirements of these
core services based on the following parameters.
• Stateful vs. stateless. Is the service stateful or stateless?
• Update traffic. How frequently is the state associated with
the service updated? Does that update scale with number
of riders/drivers?

• Read/Query traffic. How frequently is the service queried
(both for stateful and stateless services)? Does it scale with
the number of riders/drivers?

• Consistency. Can we operate with stale data? Do we need
higher levels of consistency?

• Compute size. Is the query computationally expensive?
• State size. How large is the state? Does it scale with the
number of riders/drivers?

5 BACKGROUND SERVICES

We now describe essential background service that power
UberLite core services with required data for seamless func-
tioning. We summarize the data and compute requirements
for background services in Table 2.

Forecasting. Since dynamic pricing plays a central role in
sustainable functioning of UberLite, being able to predict
supply and demand is mission-critical. Note that this fore-
casting must be performed for each neighborhood at each
unit of time. This distribution over time determines the surge
price multiplier that balances supply-vs-demand.

Forecasting dependents on several factors. Firstly, there is
a steady demand for rides on weekdays from people who use
UberLite for everyday commute. While this is reasonably
easier to forecast, demand can also be seasonal. For instance,
there is a higher demand for rides on a New Year or Inde-
pendence Day to and from public places such as parks. Even
more specific events can skew demand towards a particular
time and space - for example, the end of a Seahawks game
at the UW Stadium. More so, even realtime events such as
a change in weather can affect the forecast - demand for
rides are known to be higher when it is raining since public
transport is less preferable.
Essentially, the forecasting service must learn from:
• Historic supply vs. demand data
• Event aggregators
• Weather reports
• Realtime changes in supply vs. demand
This service requires both offline training and online predic-
tions involving machine learning and data analysis.

Pricing. Given a forecast for driver supply and rider de-
mand, the Pricing Service forecasts the surge pricing to be
applied for each neighborhood. Since the forecast can change
in realtime, the pricing scheme also has to operate in real-
time. The pricing service is also used to send periodic (say
every 4 hours) alerts or notifications to drivers specifying
that surge pricing is on at a particular time and location.
These notifications help UberLite to prepare in advance for
an increase in demand. Designing appropriate algorithms



Designing UberLite: a Ride Aggregator Service

Fig. 4. Putting all Core Marketplace Services together

Service Name

State

Queries Compute

Stateful State size Updates Staleness

Driver Discovery Yes O(D) Realtime Severe O(R) Low
Traffic Monitoring Yes O(1), Medium Realtime Severe O(R) Low
Surge Pricing Yes O(1), Medium Daily & Realtime Severe O(R) Low
Discounts & Promotions Yes O(R) + O(D) Daily Warning O(R) Low
Tax Yes O(1), Small Infrequent Severe O(R) Low
Tolls Yes O(1), Small Infrequent Severe O(R) Low
Matching Service Yes O(1), Medium Daily/Weekly Warning O(R) High
Route No - - - O(R) High
Time Estimation No - - - O(R) High
Price Estimation No - - - O(R) Low

Table 1: Analysis of Marketplace Micro-services

for computing surge price based on forecast requires data
analytic capabilities and access to past surge pricing and
supply/demand ratios.

Matching Algorithm. The matching service is key to se-
lecting a good match among a set of riders and set of drivers.
Data scientists must constantly improve this algorithm to
optimize for mission-critical goals. In order to achieve this,
they need access to matches produced in the past. To support
this, we log appropriate data for each matching query and
the respose to and from the matching service.

Discounts and Promotions. We have information about
rides taken by a rider in the past. For each rider UberLite
maintains a user profile to figure out a good incentive model

to encourage more rides. Similarly, for drivers, we know
how much time the driver drives at what price range. Given
a certain amount of money for discounts and promotions,
this analysis produces a good strategy for spending it to
encourage more rides overall.

6 INFRASTRUCTURE

So far, we have focused on the functionality of the core
and background services within UberLite. In this section,
we discuss the various types of data storage, realtime and
analytics systems we would need to implement and deploy
these micro-services. We would like to highlight here that
background and core services services integrate together to



Guna Prasaad and Johan Per Vikstrom

Service Data Dependencies Output Compute

Forecasting

Historical supply/demand Stored as forecasts Complex Data Analytics
Special events Realtime
Weather reports
Realtime changes

Pricing Supply/demand forecasts Stored and consumed by SPS Complex Data Analytics
Historic rider/driver declines Realtime
Historic prices and supply/demand

Matching Log of previous match instances Matching Model Complex Data Analytics
Discounts &
Promotions

Historic surge prices and rider/driver
declines

Stored and consumed by
DPS

Complex Data Analytics

Table 2: Summary of data and compute requirements for Background Services

improve UberLite by feeding each other with required data:
background services produce data that is used by mission-
critical core services; core services log their every action to
produce data that is then used by background services for
analysis to further improve core services.

Trip Store. Trip service is the primary end-point for all
trip related data. A data store serving the trip service hence
must have the following properties:
• It must scale horizontally with the number of rides since
a service like UberLite can grow very quickly

• The trip data maybe generated at different points in time
and these pieces of info may arrive asynchronously as the
people involved in the trip update the Trip Service.

• The schema must be extensible since in a fast moving
startup like UberLite, we must be able to change what
we collect and store very often.

• It must support a triggering service that can set hooks and
listen on changes to data at a record granularity.

• Since Trip Store is the source of truth within UberLite, it
must allow indexing on a large number of attributes such
as rider or driver identity.
There are several open-source key-value and document

stores that can be potentially modified to satisfy all the re-
quirements listed above. However, none of them - to the best
of our knowledge - support a fine-grained triggering service
and allow a large number of secondary indexes. Following
are some options:
• Apache HBase [14] is an open-source, distributed, ver-
sioned, non-relational database modeled after Google’s
Bigtable built on top of HDFS and Hadoop stack.

• Apache Accumulo [11] is a sorted distributed key/value
store that is also based on Google’s Big Table design, but
with more advanced sercurity features.

• RocksDB [9], LevelDB [17] are two open source key/value
stores based on LSM trees [20]. It is available as an embed-
ded persistent key/value store that can be deployed as a

distributed key/value store when necessary. Facebook is
known to use RocksDB extensively as a distributed data
storage engine.

• Project Voldemort modeled after Amazon’s Dynamo [7]
is a distributed data store that is designed as a key-value
store used for high-scalability storage. Voldemort is a big,
distributed, fault-tolerant, persistent hash table.

Trigger Framework. To our knowledge there isn’t a sys-
tem designed to work out-of-the-box as a trigger system.
However this framework we want can be built out of Kafka
thanks to the event model. Every state change can be mod-
eled as a Kafka even topic and several consumers groups
can subscribe to the appropriate event topics. However, this
could serve as a scalability bottleneck. We believe that it is
possible to design a tightly coupled triggered framework that
can scale with the trip store by exploiting sharding within
the trip store. Uber has designed their own triggering frame-
work [27] on top of their scalable trip store.

Core Services. Core services such as Tax Service, Tolls Ser-
vice, Discounts & Promotions Service require data storage
as well. However, the data that powers these services are
are not updated frequently and primarily serve to be used
during price estimation. So, this data can be stored persis-
tently in off-the-shelf RDBMSs with a caching layer on top to
support faster reads. Some standard options are for building
the persistent database layer are as follows:
• PostreSQL [22] is an open-source database that is actively
developed and maintained for over 30 years.

• MySQL [30] is an alternative that is widely used by many
companies such as Facebook, Twitter and YouTube.

Uber is known to have used [26] PostgreSQL internally and
recently moved [25] to MySQL. Some options for building
the caching layer are:
• Redis [23] is a data structure store software that can be
used as a cache, message broker, and database. It is widely



Designing UberLite: a Ride Aggregator Service

used with companies such as Facebook to build a dis-
tributed caching layer on top of databases such as MySQL.

• Memcached [18] is similarly a memory object caching soft-
ware. Notable users include Wikipedia, Flickr, WordPress.

• FASTER [4] 1 is an open-source embedded highly concur-
rent key-value store for point operations, that combines
a highly cache-optimized concurrent hash index with a
novel self-tuning data organization and reports state-of-
the-art performance.

Realtime Services. On the other hand, services such as
Driver Discovery, Traffic Monitoring, Surge Pricing have a
very high update as well as read traffic and hence require a
fast key/value store both for persistent storage and caching.
One could use any of the key/value stores mentioned ear-
lier to serve them. For services that involve computation on
incoming streams of data/events, we have several stream
processing systems such as Apache Spark Streaming [31],
Apache Storm [16], Apache Flink [13], Apache Kafka [19]
and Apache Pulsar [10]. Each system has specific operational
characteristics that determine the scale, latency-throughput
trade-off and programming flexibility. We defer their com-
parison as future work in the interest of space.

Logging and Analytics. The mission-critical core services
do extensive logging to capture the system state regularly.
This information is later used by the background services to
analyze and improve the core services over time. For instance,
the state of Driver Discovery Service (supply of drivers)
and Surge Pricing are logged every few seconds. This log is
then used in optimizing the Surge Pricing scheme to price
rides appropriately. Similarly the matching service logs every
input and the corresponding output produced so that the
Matching algorithms team can analyze these data to improve
the matching model. We may use a pub-sub system such
as Apache Kafka [19] or Apache Pulsar [10] to log these
services data into a distributed filesystem such as HDFS [24].
An emerging alternative is Log Device [8], which is an open-
source distributed logging platform developed at Facebook.

Then logged data can be easily consumed for analytics us-
ing Hadoop [29] or Map Reduce frameworks [6]. To support
complex analytics one could use Apache Spark [32] such
as SparkSQL or SparkML. Other open-source tools for deep
learning such as TensorFlow [2], TVM [5], PyTorch [21] can
directly consume data from such distributed file systems.
For SQL-like analytics, this data can be ingested into an
open source distributed database such as Apache Hive [15],
Apache Cassandra [12] or Myria [1] and then operated on.
1Disclaimer: One of the authors was involved in the design and development
of FASTER

7 LESSONS LEARNED

Over the course of designing UberLite, we learnt so much
about how to architect a complex service by breaking it
down into manageable simpler services. Below is an attempt
at summarizing these lessons succinctly:
• Start with a small-scale monolith. We first designed Uber-
Lite for very small scale using a single powerful database.
This initial design helped bootstrap our design process,
after which we focused on logically separable tasks and
analyzed how each one of them behaves as we scale the
operation. This strategy provided a lot of direction to the
overall design process.

• Follow the data. Once we obtained a reasonable modular
design, we analyzed the data dependencies within and
across each module. Then the natural question that fol-
lowed was how do we enable this data dependency within
the system? Answering this helped us quickly come up
with a physical design from functional specification.

• Design for flexibility. At every stage of the design, we
prioritized flexibility since our end goal was also to extend
UberLite for ride-sharing. While premature optimization
could be an evil to be avoided, designing for the future
both in terms of new features and performance growth is
key to achieving a good extensible system design.

• Open-source is powerful. As we started investigating po-
tential open-source systems that could be used to serve
our functional needs, we realized how the open-source
ecosystem could satisfy almost every single requirement
barring a few exceptional ones. Getting a complex appli-
cation such as UberLite up and running can be done in a
matter of few months with the help of mainly open-source
systems and this is a great thing to be true!

REFERENCES

[1] 2017. CIDR 2017, 8th Biennial Conference on Innovative Data Systems

Research, Chaminade, CA, USA, January 8-11, 2017, Online Proceedings.
www.cidrdb.org. http://cidrdb.org/cidr2017/index.html

[2] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng
Chen, Craig Citro, Greg S. Corrado, AndyDavis, Jeffrey Dean, Matthieu
Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey
Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser,
Manjunath Kudlur, Josh Levenberg, Dan Mané, Rajat Monga, Sherry
Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens,
Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent
Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete
Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang
Zheng. 2015. TensorFlow: Large-Scale Machine Learning on Hetero-
geneous Systems. http://tensorflow.org/ Software available from
tensorflow.org.

[3] CBInsights. 2019. How Uber Makes — And Loses — Money. https:
//eng.uber.com/mezzanine-migration/

[4] Badrish Chandramouli, Guna Prasaad, Donald Kossmann, Justin Levan-
doski, James Hunter, and Mike Barnett. 2018. FASTER: A Concurrent
Key-Value Store with In-Place Updates. In Proceedings of the 2018 In-

ternational Conference on Management of Data (SIGMOD ’18). ACM,
New York, NY, USA, 275–290.

http://cidrdb.org/cidr2017/index.html
http://tensorflow.org/
https://eng.uber.com/mezzanine-migration/
https://eng.uber.com/mezzanine-migration/


Guna Prasaad and Johan Per Vikstrom

[5] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie
Yan, Meghan Cowan, Haichen Shen, Leyuan Wang, Yuwei Hu, Luis
Ceze, Carlos Guestrin, and Arvind Krishnamurthy. 2018. TVM: An
Automated End-to-end Optimizing Compiler for Deep Learning. In
Proceedings of the 12th USENIX Conference on Operating Systems Design

and Implementation (OSDI’18). USENIX Association, Berkeley, CA,
USA, 579–594. http://dl.acm.org/citation.cfm?id=3291168.3291211

[6] Jeffrey Dean and Sanjay Ghemawat. 2004. MapReduce: Simplified Data
Processing on Large Clusters. In Proceedings of the 6th Conference on

Symposium on Operating Systems Design & Implementation - Volume

6 (OSDI’04). USENIX Association, Berkeley, CA, USA, 10–10. http:
//dl.acm.org/citation.cfm?id=1251254.1251264

[7] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan
Kakulapati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubra-
manian, Peter Vosshall, and Werner Vogels. 2007. Dynamo: Amazon’s
Highly Available Key-value Store. In Proceedings of Twenty-first ACM

SIGOPS Symposium on Operating Systems Principles (SOSP ’07). ACM,
New York, NY, USA, 205–220. https://doi.org/10.1145/1294261.1294281

[8] Facebook. 2019. LogDevice. https://logdevice.io/
[9] Facebook. 2019. RocksDB. https://rocksdb.org/
[10] TheApache Software Foundation. 2016. Apache Samza. http://gopulsar.

io/. Accessed: 2017-01-16.
[11] The Apache Software Foundation. 2019. Apache Accumulo. https:

//accumulo.apache.org/
[12] The Apache Software Foundation. 2019. Apache Cassandra. https:

//cassandra.apache.org/
[13] The Apache Software Foundation. 2019. Apache Flink. https://flink.

apache.org/
[14] The Apache Software Foundation. 2019. Apache HBase. https://hbase.

apache.org/
[15] The Apache Software Foundation. 2019. Apache Hive. https://hive.

apache.org/
[16] The Apache Software Foundation. 2019. Apache Storm. https://storm.

apache.org/
[17] Google. 2019. LevelDB. https://github.com/google/leveldb
[18] Memcached. 2017. https://memcached.org/. [Online; accessed 30-Oct-

2017].
[19] Neha Narkhede, Gwen Shapira, and Todd Palino. 2017. Kafka: The

Definitive Guide Real-Time Data and Stream Processing at Scale (1st ed.).

O’Reilly Media, Inc.
[20] Patrick O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth O’Neil.

1996. The Log-structured Merge-tree (LSM-tree). Acta Inf. 33, 4 (June
1996), 351–385. https://doi.org/10.1007/s002360050048

[21] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward
Yang, Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga,
and Adam Lerer. 2017. Automatic differentiation in PyTorch. (2017).

[22] R Development Core Team. 2004. R: A language and environment for

statistical computing. R Foundation for Statistical Computing, Vienna,
Austria. http://www.R-project.org 3-900051-07-0.

[23] Redis. 2017. https://redis.io/. [Online; accessed 30-Oct-2017].
[24] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert

Chansler. 2010. The Hadoop Distributed File System. In Proceedings

of the 2010 IEEE 26th Symposium on Mass Storage Systems and Tech-

nologies (MSST) (MSST ’10). IEEE Computer Society, Washington, DC,
USA, 1–10. https://doi.org/10.1109/MSST.2010.5496972

[25] Uber. 2016. The Architecture of Schemaless, Uber Engineering’s Trip

Datastore Using MySQL. https://eng.uber.com/schemaless-part-two/
[26] Uber. 2016. Project Mezzanine: The Great Migration. https://eng.uber.

com/mezzanine-migration/
[27] Uber. 2016. Using Triggers On Schemaless, Uber Engineering’s Datastore

Using MySQL. https://eng.uber.com/schemaless-part-three/
[28] Uber. 2018. H3: Uber’s Hexagonal Hierarchical Spatial Index. https:

//eng.uber.com/h3/
[29] Tom White. 2009. Hadoop: The Definitive Guide (1st ed.). O’Reilly

Media, Inc.
[30] Michael Widenius and Davis Axmark. 2002. Mysql Reference Manual

(1st ed.). O’Reilly & Associates, Inc., Sebastopol, CA, USA.
[31] Matei Zaharia, Tathagata Das, Haoyuan Li, Scott Shenker, and Ion

Stoica. 2012. Discretized Streams: An Efficient and Fault-tolerant
Model for Stream Processing on Large Clusters. In Proceedings of the 4th
USENIX Conference on Hot Topics in Cloud Ccomputing (HotCloud’12).
USENIX Association, Berkeley, CA, USA, 10–10. http://dl.acm.org/
citation.cfm?id=2342763.2342773

[32] Matei Zaharia, Reynold S. Xin, Patrick Wendell, Tathagata Das,
Michael Armbrust, Ankur Dave, Xiangrui Meng, Josh Rosen, Shiv-
aram Venkataraman, Michael J. Franklin, Ali Ghodsi, Joseph Gonzalez,
Scott Shenker, and Ion Stoica. 2016. Apache Spark: A Unified Engine
for Big Data Processing. Commun. ACM 59, 11 (Oct. 2016), 56–65.
https://doi.org/10.1145/2934664

http://dl.acm.org/citation.cfm?id=3291168.3291211
http://dl.acm.org/citation.cfm?id=1251254.1251264
http://dl.acm.org/citation.cfm?id=1251254.1251264
https://doi.org/10.1145/1294261.1294281
https://logdevice.io/
https://rocksdb.org/
http://gopulsar.io/
http://gopulsar.io/
https://accumulo.apache.org/
https://accumulo.apache.org/
https://cassandra.apache.org/
https://cassandra.apache.org/
https://flink.apache.org/
https://flink.apache.org/
https://hbase.apache.org/
https://hbase.apache.org/
https://hive.apache.org/
https://hive.apache.org/
https://storm.apache.org/
https://storm.apache.org/
https://github.com/google/leveldb
https://memcached.org/
https://doi.org/10.1007/s002360050048
http://www.R-project.org
https://redis.io/
https://doi.org/10.1109/MSST.2010.5496972
https://eng.uber.com/schemaless-part-two/
https://eng.uber.com/mezzanine-migration/
https://eng.uber.com/mezzanine-migration/
https://eng.uber.com/schemaless-part-three/
https://eng.uber.com/h3/
https://eng.uber.com/h3/
http://dl.acm.org/citation.cfm?id=2342763.2342773
http://dl.acm.org/citation.cfm?id=2342763.2342773
https://doi.org/10.1145/2934664

	1 Introduction
	2 Background
	3 Anatomy of a Trip in UberLite
	4 Core Services
	4.1 Functional Specification
	4.2 Analysis

	5 Background Services
	6 Infrastructure
	7 Lessons Learned
	References

